If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-36x+99=0
a = 3; b = -36; c = +99;
Δ = b2-4ac
Δ = -362-4·3·99
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-6\sqrt{3}}{2*3}=\frac{36-6\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+6\sqrt{3}}{2*3}=\frac{36+6\sqrt{3}}{6} $
| 89-x=125 | | 4x+75=x | | x+97569376284628=87654345678908765432 | | y-(y*0.1)=200 | | x^2+6^2-21=4x^2+24 | | 3(y+4)2(y-1)=3 | | X^4-3x-36=0 | | 3^7x-3=9^2x | | y=7/8(1) | | X+7/3=x/5 | | -7.9x+4.3x=-18 | | 2/5c+4/5c=6=c+7 | | 2=3/v+1 | | 12+4(z+3)=3z+1 | | -8w-48=5(w-7) | | -(-3x-2)=17 | | 2(m-2)=10 | | (1-0.8^x)=2x/40 | | 6/51=3/c | | 4x+15-4=37 | | 1/2x+1/5x=3 | | -5(u+3)=8u+11 | | 5x+13=x^2-1 | | 50-5x+5-4x+17-3x=180 | | t/14/9=13 | | 4v/9=16 | | 13=x2-2x+37 | | x+3/x-3+6(x-3/x+3)=5 | | 19+3(2n-14)=1 | | 1/2x.1/5x=3 | | 4y3-3y+2=0 | | 7x+26=9(x+4) |